

Cambridge International Examinations

Cambridge International Advanced Subsidiary Level

MATHEMATICS 9709/22

Paper 2 Pure Mathematics

March 2017

MARK SCHEME
Maximum Mark: 50

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

March 2017

Cambridge International AS Level – Mark Scheme PUBLISHED

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained.

 Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol
 [↑] implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
 - Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or
 which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A
 or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For
 Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to
 9.8 or 9.81 instead of 10.

© UCLES 2017 Page 2 of 7

March 2017

PUBLISHED

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF/OE	Any Equivalent Form (of answer is equally acceptable) / Or Equivalent
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
SOI	Seen or implied
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case

Penalties

circumstance)

A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR -2 penalty may be applied in particular cases if agreed at the coordination meeting.

where some standard marking practice is to be varied in the light of a particular

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

© UCLES 2017 Page 3 of 7

Question	Answer	Marks	Guidance
1	Use $2\ln(2x) = \ln(2x)^2$	*M1	
	Use addition or subtraction property of logarithms	*M1	
	Obtain $4x^2 = (x+3)(3x+5)$ or equivalent without logarithms	A1	
	Solve 3-term quadratic equation	DM1	dep *M *M
	Conclude with $x = 15$ only	A1	
	Total:	5	

Question	Answer	Marks	Guidance
2(i)	Use identity $\cot \theta = \frac{1}{\tan \theta}$	B1	
	Attempt use of identity for $\tan 2\theta$	M1	
	Confirm given $\tan^2 \theta = \frac{3}{4}$	A1	
	Total:	3	
2(ii)	Obtain 40.9	B1	
	Obtain 139.1	B1	
	Total:	2	

Question	Answer	Marks	Guidance
3(i)	State or imply non-modulus inequality $(2x-5)^2 < (x+3)^2$ or corresponding equation or pair of linear equations	B1	
	Attempt solution of 3-term quadratic inequality or equation or of 2 linear equations	M1	
	Obtain critical values $\frac{2}{3}$ and 8	A1	
	State answer $\frac{2}{3} < x < 8$	A1	
	Total:	4	

Question	Answer	Marks	Guidance
3(ii)	Attempt to find y from $\ln y = \text{upper limit of answer to part } (i)$	M1	
	Obtain 2980	A1	
	Total:	2	

Question	Answer	Marks	Guidance
4	Use product rule for derivative of $x^2 \sin y$	M1	
	Obtain $2x \sin y + x^2 \cos y \frac{dy}{dx}$	A1	
	Obtain $-3\sin 3y \frac{dy}{dx}$ as derivative of $\cos 3y$	B1	
	Obtain $2x\sin y + x^2\cos y \frac{dy}{dx} - 3\sin 3y \frac{dy}{dx} = 0$	A1	
	Substitute $x = 2$, $y = \frac{1}{2}\pi$ to find value of $\frac{dy}{dx}$	M1	dep $\frac{dy}{dx}$ occurring at least once
	Obtain $-\frac{4}{3}$	A1	from correct work only
	Total:	6	

Question	Answer	Marks	Guidance
5(i)	Integrate to obtain form $k_1x + k_2x^2 + k_3e^{3x}$ for non-zero constants	M1	
	Obtain $x + x^2 + e^{3x}$	A1	
	Apply both limits to obtain $a + a^2 + e^{3a} - 1 = 250$ or equivalent	A1	
	Apply correct process to reach form without e involved	M1	
	Confirm given $a = \frac{1}{3}\ln(251 - a - a^2)$	A1	
	Total:	5	

© UCLES 2017 Page 5 of 7

Question	Answer	Marks	Guidance
5(ii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.835	A1	
	Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1.8345, 1.8355)	A1	
	Total:	3	

Question	Answer	Marks	Guidance
6(i)	Substitute $x = -2$ and equate to zero	M1	
	Substitute $x = 2$ and equate to 28	M1	
	Obtain $-9a + 4b + 34 = 0$ and $7a + 4b - 62 = 0$ or equivalents	A1	
	Solve a relevant pair of simultaneous equations for a or b	M1	
	Obtain $a = 6, b = 5$	A1	
	Total:	5	
6(ii)	Divide by $x + 2$, or equivalent, at least as far as $k_1x^2 + k_2x$	M1	
	Obtain $6x^2 - 7x - 3$	A1	
	Obtain $(x+2)(3x+1)(3x-3)$	A1	
	Total:	3	
6(iii)	Refer to, or clearly imply, fact that 2^y is positive	M1	
	State one	A 1∜	following 3 linear factors from part (ii)
	Total:	2	

© UCLES 2017 Page 6 of 7

Question	Answer	Marks	Guidance
7(i)	Use $cos(A + B)$ identity	M1	
	Obtain $2\cos 2x \left(\cos 2x \cdot \frac{1}{2}\sqrt{3} - \sin 2x \cdot \frac{1}{2}\right)$	A1	
	Attempt identity expressing $\cos^2 2x$ in terms of $\cos 4x$	M1	
	Attempt identity expressing $\cos 2x \sin 2x$ in terms of $\sin 4x$	M1	
	Obtain $\frac{1}{2}\sqrt{3}(1+\cos 4x) - \frac{1}{2}\sin 4x$	A1	
	Total:	5	
7(ii)	Attempt to find at least one intercept with <i>x</i> -axis	M1	
	Obtain $x = \frac{1}{6}\pi$ at least	A1	
	Integrate to obtain $k_4x + k_5 \sin 4x + k_6 \cos 4x$	M1	
	Obtain $\frac{1}{2}\sqrt{3}x + \frac{1}{8}\sqrt{3}\sin 4x + \frac{1}{8}\cos 4x$	A 1√	following their answer to (i) of correct form
	Apply limits 0 and $\frac{1}{6}\pi$ to obtain $\left(\frac{1}{12}\sqrt{3}\right)\pi$ or exact equivalent	A1	following completely correct work
	Total:	5	

© UCLES 2017 Page 7 of 7